1. Knowledge Organisers - Number \& Place Value Number and Place Value is a key priority in our school 2022-2023

What are these?

The following knowledge organisers are developed based on the NCTEM progression documents for number and place value.

Every effort has been made to provide the learners with support for learning and understanding the essential skills in each aspect of number and place value.
Children should learn to and understand the key vocabulary and should be utilising this in varying contexts.
The teacher must use opportunities to link these facts to other areas of maths and other areas of the curriculum.

Simply providing the children with these organisers will not support them in their learning. Their use needs to be specifically taught and the children must see these as a learning aid.

The knowledge organisers are developed to be double sided with each child having their own copy (preferably printed on card) which they annotate to help support them further and or use to track their progress. The number on each knowledge organiser relates to the year group which the content relates to.

Why use them?
Working memory - This is where thinking actually happens. It has a very finite capacity; it can only hold and process about four different items at a time. If it receives too much it fails.

Long-term memory - Long-term memory has huge - almost infinite - capacity. It is here that we store our knowledge of facts and procedures. The goal is to stock our long-term memories with
knowledge in a well organised, easily retrievable way and make recall of key aspects automatic. This frees up the working memory for new information.

Cognitive load - This is the term used in cognitive science to describe how much capacity something takes up in the working memory. Cognitive overload is what happens if too many demands are placed on working memory at once.
The aim of the knowledge organisers is to improve the speed with which information is stored in the long term memory, thus improving the learners ability to develop deep learning in more areas of the curriculum.

How can these be used?

There are several ways that you can use knowledge organisers with children.

1. Send the previous knowledge organiser home with the children before the start of a new topic to encourage discussion and recap of prior learning.
2. Display an enlarged copy of the knowledge organiser on the working wall, encourage children to add information (particularly different visual representations) around it during the topic.
3. All children to have a card copy of the knowledge organiser which is always available with their bank of other knowledge organisers. The footers and headers are purposely blank as children should annotate their individual knowledge organisers to support them further eg starring any aspects that they find tricky, adding any STEM sentences which they struggle with.
4. During lessons learners can be directed to question each other on a specific area (in a short time frame before swapping over).
5. Vocabulary prompts - use the vocabulary bank to insist the ALL children are supported in utilising the correct topic related vocabulary.
6. Teachers can challenge children to find the appropriate information at speed and put their finger on the relevant place on the organiser - children can also complete these task in pairs with a short time scale.

How are they not to be used?

These provide a brief overview of what the children should securely know by the end of that year group. They should NOT be utilised as an end point and links must be made to other areas of learning.

They are not the planning for the topic.
Currently, these knowledge organisers, are a starting point and will need to be adapted over time in response to the needs of the children.

Top Tip: Number bonds, times tables, measurement conversions should all go into long-term memory.

COUNTING					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number			count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2,3, and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of $4,8,50$ and 100 ;	count in multiples of 6,7 , 9,25 and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
given a number, identify one more and one less		find 10 or 100 more or less than a given number	find 1000 more or less than a given number		
COMPARING NUMBERS					
use the language of: equal to, more than, less than (fewer), most, least	compare and order numbers from 0 up to 100; use <, > and = signs	compare and order numbers up to 1000	order and compare numbers beyond 1000	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
			compare numbers with the same number of decimal places up to two decimal places (copied from Fractions)		
IDENTIFYING, REPRESENTING AND ESTIMATING NUMBERS					
identify and represent numbers using objects and pictorial representations including the number line	identify, represent and estimate numbers using different representations, including the number line	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations		National Centre for Excellence in the Teaching of Mathematics

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words	read and write numbers up to 1000 in numerals and in words		read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Comparing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Understanding Place Value)
		tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24hour clocks (copied from Measurement)	read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	read Roman numerals to 1 000 (M) and recognise years written in Roman numerals.	
UNDERSTANDING PLACE VALUE					
	recognise the place value of each digit in a two-digit number (tens, ones)	recognise the place value of each digit in a three-digit number (hundreds, tens, ones)	recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers) recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (copied from Fractions)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
			find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the		identify the value of each digit to three decimal places and multiply and divide
National Centre for Excellence in the Teaching of Mathematics			value of the digits in the answer as units, tenths and hundredths (copied from Fractions)		numbers by 10,100 and 1000 where the answers are up to three decimal places (copied from Fractions)

7 seven

- 1 one

- 2 two
$\therefore 3$ three
$\because 4$ four
$\because 5$ five
$:: 6$ six
Use the resources on your tables to help you!

11 eleven
12 twelve
13 thirteen
14 fourteen
15 fifteen

16 sixteen
17 seventeen
18 eighteen
19 nineteen
20 twenty

Give Me Five, Turkey: 蝶

$\begin{gathered} N / 4 \\ 5 \\ 5 \end{gathered}$	$\begin{aligned} & \text { Mhy } \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{NH}_{4}^{1} \\ & 15 \end{aligned}$	$\begin{aligned} & \text { NHy } \\ & 20 \end{aligned}$	$\begin{aligned} & \text { M14 } \\ & 25 \end{aligned}$
$\begin{aligned} & \mathrm{NH} \\ & 30 \\ & 30 \end{aligned}$	Mr 35	$\begin{aligned} & \text { NHy } \\ & 40 \end{aligned}$	$\begin{aligned} & N / 4 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 10 y \\ & 50 \\ & 50 \end{aligned}$
$\begin{aligned} & \text { Ny } \\ & 55 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{MH} \\ & 60 \end{aligned}$	$\begin{aligned} & N / 4 \\ & 65 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 70 \end{aligned}$	$\begin{aligned} & 14 y \\ & 75 \end{aligned}$
$\begin{aligned} & N 4 y \\ & 80 \end{aligned}$	$\begin{aligned} & 114 \\ & 85 \end{aligned}$	$\begin{aligned} & \operatorname{NHy} \\ & 90 \end{aligned}$	$\begin{aligned} & N / 4 \\ & 95 \\ & 95 \end{aligned}$	$\begin{gathered} \text { NHy } \\ 100 \end{gathered}$

Vocabulary

equal	more
less	most
least	$>$
$<$	$=$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Counting in 25												
0	2	4	6	B	10	12	14	16	18	20	22	24
Counting in 5s												
0	5	10	15	20	25	30	35	40	45	50	55	60
Counting in 10s												
0	10	20	30	40	50	60	70	80	90	100	110	120

How do you know this?
I think this because ...
The strategy I used was ... I agree with the answer because ...
I disagree with the answer because ...

Counting in 1s
Forwards
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Counting in 1s
Backwards
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Counting in 25
Forvards
2
4
6
6
8
10
12
12
14
16
18
18
20
22

Counting in 2s Backwards 22 20 20 18 16 14 14 12 10 8 6 4 4 2

Counting in $5 s$
Forwards
0
5
10
15
20
25
30
35
40
45
50
55

Counting in 5s Backwards
55
50
45
40
35
30
25
20
15
10
5
0

Counting
in 2s
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46

Counting
in 2s
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0

Counting in 3s	Counting in 3s
0	69
3	63
6	60
6	57
12	54
15	51
18	48
21	45
24	42
27	39
30	36
33	33
36	30
39	27
42	24
45	21
48	18
51	15
54	12
57	9
60	6
63	3
69	0

Counting in $5 s$

Counting in 5s

Counting

Counting | | |
| :--- | :--- |
| 0 | 115 | in 10s in 10 s

How do you Know this?

I think this because ...

The strategy I used was ...
I agree with the answer because ...
I disagree with the answer because ...

How can I use this information to find ten or one hundred more or less than any number?

100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

backward forwards

1	2	3	4	5	6	7	8		10 more
11	12	13	14	15	16	17	18	5	20
21	22	23	24	25	20	27	28	29	30
31	32	33	34	35	10	38	39	40	
41	42	43	44	45	less	48	49	50	
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	How can I use this information to find ten or one hundred more or less than any number?			

385

100 less

Find the smaller number.

$$
648
$$ 648 is smaller than 649 matholio

Vocabulary

Rose
Maths

$$
649
$$

equal	more
less	most
digit	estimate
represent	$=$
greater	$>$
$<$	fewer
tens	ones
hundred	difference

Counting in 4s	Counting in $4 s$	Counting in 8s	Counting in 8s	Counting in 50s	Counting in 50s	Counting in 100s	Counting in 100s
0	92	0	176	0	1,150	0	2,300
4	88	8	168	50	1,100	100	2,200
8	84	16	160	100	1,050	200	2,100
12	80	24	152	150	1,000	300	2,000
16	76	32	144	200	950	400	1,900
20	72	40	136	250	900	500	1,800
24	68	48	128	300	850	600	1,700
28	64	56	120	350	800	700	1,600
32	60	64	112	400	750	800	1,500
36	56	72	104	450	700	900	1,400
40	52	80	96	500	650	1,000	1,300
44	48	88	88	550	600	1,100	1,200
48	44	96	80	600	550	1,200	1,100
52	40	104	72	650	500	1,300	1,000
56	36	112	64	700	450	1,400	900
60	32	120	56	750	400	1,500	800
64	28	128	48	800	350	1,600	700
68	24	136	40	850	300	1,700	600
72	20	144	32	900	250	1,800	500
76	16	152	24	950	200	1,900	400
80	12	160	16	1,000	150	2,000	300
84	8	168	8	1,050	100	2,100	200
88	4	176	0	1,100	50	2,200	100
92	0			1,150	0	2,300	0

How do you know this?
I think this because ...
The strategy I used was ...
I agree with the answer because ...
I disagree with the answer because ...

Year 4 - Place Value

Place Value Chart

\qquad $+100$
$+$
10 $+1$ \qquad $=1,111$

Multiplying and Dividing by 10, 100 and 1000

Maths
Decimal Places
To round 7.63 to 1 decimal place
\qquad
$\mathbf{1}^{3 i s \text { sess then } 5 \text { (hat wey ser sound domn }}$
7.63 rounded to 1 decimal place is 7.6

To round 16.79 to 1 decimal place
16.79

1) 9 is greater then 5 (haff woy) so or vend dup
16.79 rounded to 1 decimal place is 16.8

Vocabulary

equal	more
less	most
digit	estimate
represent	$=$
greater	$>$
$<$	fewer
tens	ones
hundred	difference

Counting in 6s	Countin g in 6 s	Countin g in 7 s	Countin g in 7s	Countin g in 9s	Countin g in 9s	Counting in 25 s	Counting in 25s	Counting in 1000s	Counting in 1000s
0	138		161	0	207	25	600	0	23,000
6	132	7	154	9	198	50	575	1,000	22,000
12	126	14	147	18	189	75	550	2,000	21,000
18	120	21	140	27	180	100	525	3,000	20,000
24	11	28	133	36	171	125	500	4,000	19,000
30	108	35	126	45	162	150	475	5,000	18,000
36	102	42	119	54	153	175	450	6,000	17,000
42	96	49	112	63	144	200	425	7,000	16,000
48	90	56	105	72	135	225	400	8,000	15,000
54	84	63	98	81	126	250	375	9,000	14,000
60	78	70	91	90	117	275	350	10,000	13,000
66	72	77	84	99	108	300	325	11,000	12,000
72	66	84	77	108	99	325	300	12,000	11,000
78	60	91	10	117	90	350	275	13,000	10,000
84	54	98	63	126	81	375	250	14,000	9,000
90	48	105	56	135	72	400	225	15,000	8,000
96	42	112	49	144	63	425	200	16,000	7,000
102	36	119	41	153	54	450	175	17,000	6,000
108	30	126	35	162	45	475	150	18,000	5,000
114	24	133	28	171	36	500	125	19,000	4,000
120	18	140	21	180	27	525	100	20,000	3,000
126	12	147	14	189	18	550	75	21,000	2,000
132	6	154	7	198	9	575	50	22,000	1,000
138	0	161	0	207	0	600	0	23,000	-

How do you know this?

I think this because ... The strategy I used was ...

I agree with the answer because ... I disagree with the answer because ...

One Million＝1，000， 000 （six zeros－or six digits after the million digit）

Negative Numbers

Negative numbers are numbers less than zero：

$$
\begin{aligned}
& -5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots \\
& \text { negative } \\
& \text { positive } \\
& \text { The temperature during the day is } 5^{\circ} \mathrm{C} . \text { During the night, it drops by } 8^{\circ} \mathrm{C} \text {. } \\
& \text { What is the new temperature ? } \\
& \text { Answer: } 5-8=-3 \text { (say: minus } 3 \text { degrees) }
\end{aligned}
$$

ORDERANDCOMPARE NUMBERS BEYOND 1000

Millions			Thousands			Ones		
	縬	\％88	慮	品詈	呇		輿	8
1	2	3，	4	5	6，	7	8	9

Standard Form：123，456，789
Expanded Form：100，000，000 $+20,000,000+$
$3,000,000+400,000+80,000 * 6,000+700+80 * 9$
Word Form one hundred twenty－three million，four hundred fifty－six thousand，seven hundred elghty－nine

Roman Numerals		
1	I	1
2	II	$1+1$
3	III	1＋1＋1
4	IV	5－1
5	V	5
6	VI	$5+1$
7	VII	$5+1+1$
8	VIII	$5+1+1+1$
9	IX	10－1
10	X	10
20	XX	$10+10$
50	L	50
90	XC	100－10
100	C	100

Vocabulary

negative	positive
compare	value
tenth	hundredth
decimal equivalents	
nearest whole number	
one decimal place	

Kix DECIMAL PLACE VALUE CHART										
					$\stackrel{\sim}{\stackrel{\sim}{0}}$	${ }_{0}^{0}$		¢ $\stackrel{y}{\square}$ $\stackrel{0}{\circ}$		
							-			

7.63

1 3 is less than 5 (half way) so round down
7.63 rounded to 1 decimal place is 7.6

To round 16.79 to 1 decimal place
16.79

9 is greater than 5 (half way) so round up
16.79 rounded to 1 decimal place is 16.8

Rounding to the nearest 1000: Step one identify the 1,000 digit. Step two identify if it rounds up or down (see the rounding coaster). Step three write the digits before the thousands (if there are any) Step four write the rounded thousand number.

$$
\begin{aligned}
12 & \rightarrow 10 \\
114 & \rightarrow 110 \\
57 & \rightarrow 60 \\
1,334 & \rightarrow 1330 \\
1,488 & \rightarrow 1490 \\
97 & \rightarrow 100
\end{aligned}
$$

$$
\begin{aligned}
7,8 \underline{8} 1 & \rightarrow 7,900 \\
15,753 & \rightarrow 15,800 \\
99,961 & \rightarrow 100,000 \\
3,3 \underline{5} 0 & \rightarrow 3,300 \\
4,50 & \rightarrow 500
\end{aligned}
$$

7,891 $\rightarrow 7,900$	8,800 $\rightarrow 9,000$
15,753 \rightarrow 15,800	1,015 \rightarrow 1,000
99,961 \rightarrow 100,000	12,450 \rightarrow 12,000
$3,3 \underline{5} 0 \rightarrow 3,300$	$333,878 \rightarrow 334,000$
$450 \rightarrow 500$	$400,400 \rightarrow 400,000$

$$
8, \underline{8} 00 \rightarrow 9,000
$$

$$
1, \underline{0} 15 \rightarrow 1,000
$$

$$
12,450 \rightarrow 12,000
$$

$$
33 \overline{3}, \underline{8} 78 \rightarrow 334,000
$$

How do you know this?

I agree with the answer because ... I disagree with the answer because ...

One Million＝1，000， 000 （six zeros－or six digits after the million digit）

Year 6－Place Value

Negative Numbers

Negative numbers are numbers less than zero：

$$
\begin{aligned}
& -5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots \\
& \text { negative } \\
& \text { The temperature during the day is } 5^{\circ} \mathrm{C} . \text { During the night, it drops by } 8^{\circ} \mathrm{C} \text {. } \\
& \text { What is the new temperature ? } \\
& \text { Answer: } 5-8=-3 \text { (say: minus } 3 \text { degrees) }
\end{aligned}
$$

ORDER ANDCOMPARE NUMBERS BEYOND 1000

908	4908	1108	2793	9093	3345
$\begin{aligned} & 100 \text { to } \\ & 1000 \end{aligned}$	$\begin{gathered} 1001 \text { to } \\ 2000 \end{gathered}$	$\begin{gathered} 2001 \text { to } \\ 3000 \end{gathered}$	$\begin{aligned} & 3001 \text { to } \\ & 4000 \end{aligned}$	$\begin{aligned} & 4001 \text { to } \\ & 5000 \end{aligned}$	greuter than 5000
	Undo		eset	submit	

Millons			thouands			Ones		
	既品	8	筧	比	\％	量	！	$\stackrel{8}{8}$
1	2	3,	4	5	6,	7	8	9

Standard Form：123，456，789
Expanded Form：100，000，000 $+20,000,000+$
$3,000,000+400,000+80,000 * 6,000+700+80 * 9$
Word Form one hundred twenty－three million，four hundred fifty－six thousand，seven hundred eighty－nine

Roman Numerals		
1	I	1
2	II	$1+1$
3	III	1＋1＋1
4	IV	5－1
5	V	5
6	VI	$5+1$
7	VII	$5+1+1$
8	VIII	$5+1+1+1$
9	IX	10－1
10	X	10
20	XX	$10+10$
50	L	50
90	XC	100－10
100	C	100

Vocabulary

negative	positive
compare	value
tenth	hundredth
decimal equivalents	
nearest whole number	
one decimal place	

Kix DECIMAL PLACE VALUE CHART										
					$\stackrel{\sim}{\stackrel{\sim}{0}}$	${ }_{0}^{0}$		¢ $\stackrel{y}{\square}$ $\stackrel{0}{\circ}$		
							-			

7.63

1 3 is less than 5 (half way) so round down
7.63 rounded to 1 decimal place is 7.6

To round 16.79 to 1 decimal place
16.79

9 is greater than 5 (half way) so round up
16.79 rounded to 1 decimal place is 16.8

Rounding to the nearest 1000: Step one identify the 1,000 digit. Step two identify if it rounds up or down (see the rounding coaster). Step three write the digits before the thousands (if there are any) Step four write the rounded thousand number.

$$
\begin{aligned}
12 & \rightarrow 10 \\
114 & \rightarrow 110 \\
57 & \rightarrow 60 \\
1,334 & \rightarrow 1330 \\
1,488 & \rightarrow 1490 \\
97 & \rightarrow 100
\end{aligned}
$$

$$
\begin{aligned}
7,8 \underline{8} 1 & \rightarrow 7,900 \\
15,753 & \rightarrow 15,800 \\
99,961 & \rightarrow 100,000 \\
3,3 \underline{5} 0 & \rightarrow 3,300 \\
4,50 & \rightarrow 500
\end{aligned}
$$

7,891 $\rightarrow 7,900$	8,800 $\rightarrow 9,000$
15,753 \rightarrow 15,800	1,015 \rightarrow 1,000
99,961 \rightarrow 100,000	12,450 \rightarrow 12,000
$3,3 \underline{5} 0 \rightarrow 3,300$	$333,878 \rightarrow 334,000$
$450 \rightarrow 500$	$400,400 \rightarrow 400,000$

$$
8, \underline{8} 00 \rightarrow 9,000
$$

$$
1, \underline{0} 15 \rightarrow 1,000
$$

$$
12,450 \rightarrow 12,000
$$

$$
33 \overline{3}, \underline{8} 78 \rightarrow 334,000
$$

How do you know this?

I agree with the answer because ... I disagree with the answer because ...

Recommended Websites:

Teaching:
https://masterthecurriculum.co.uk/
https://mathsticks.com/my/
https://www.mathsisfun.com/place-value.html
https://reasoningmathshub.co.uk/
https://garyhall.org.uk/category/maths.html

Home Use:
https://www.topmarks.co.uk/maths-games/hit-the-button

